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ABSTRACT 

A summary is presented of the author’s attempts in a series of papers to 
determine the neutrino masse8 and mixings in seesaw models with three left- 
handed doublet and three right-handed singlet neutrinos, when the Dirac 
submatrix exhibits a hierarchical chiral symmetry-breaking structure similar 
to that for quarks. If one requires depletions of both the solar v. and at- 
mospheric v,, fluxes, as recently observed by both the Kamiokande and IMB 
experiments, the right-handed Majoram submatrix must exhibit a bierarcbi- 
cal cbiral symmetry-breaking form remarkably similar to that for the Dirac 
submatrix. 

The present highly accurate e+e- collider experiments performed in the LEP 
ring at CERN have revealed’ at the Z peak that there are just three flavors of light 
left-handed doublet neutrinos under the sum x U(l)= electroweak group. But no 
information emerges concerning the number of heavy left-handed doublet states, for 
kinematical reasons, or right-handed isosinglet neutrinos, for electroweak-symmetry 
reasons. Alternatively, little is known about the number of neutrino mms eigenstates 
other than that the minimum number is three, whether the neutrinos are Dirac or 
Majorana,a let alone their specific masses and mixings. In the following, we shall assume 
there are three left-handed doublet and three right-handed singlet neutrinos and present 
the results from a series of studies3-6 which seeks to determine the mass and mixing 
spectrum in a well-defined framework. 

1. Seesaw Models with Six Majorana Neutrinos 

The lepton mass matrices must then be 6 x 6 complex symmetric and can be 
written in terms of the left-handed and right-handed Majorana submatrices LM and 
RM, in addition to the Dirac submatrices MN and ML, aa 

MN = 
> I ML = 

> 
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in the weak flavor bases E = {V’iLT (N:)L}, BR = ((+)R, iV,!n} for neutrinos and 
likewise for the charged leptons. We shall proceed to make the following additional 
assumptions: 

a. No Higgs triplets are present, so LM = 0. 

b. The quark and lepton Dirac matrices exhibit quark-lepton symmetry in a form 
to be presented below. 

c. The nonzero RM entries are much larger than the MN Dirac entries, so that 
the well-known seesaw effects is developed; moreover, we shall assume that RM 
has rank three, so that six self-conjugate Majorana neutrino mass states emerge 
through diagonalization of MN. 

With the above assumptions, the weak charged-current Lagrangian 

J$? = -giGyV,it!iLWp + h.c. 
Jz 

written in the mass basis involves a mixing matrix which is 6 x 3, as all six neutrino mass 
eigenstates couple to just three charged-lepton states. Generalized unitarity implies 
that the sum over row elements of V,i is given by 

O 52 /Ki12 5 1 for each a = 1,2,...,6 (3a) 
i=l 

subject to the restriction 

g IVail = 1 for each i = 1,2,3 PI 

With the rank 3 seesaw mechanism operating, the three light Majorana neutrinos nearly 
saturate the unitarity bound in (3a), so that 

as the heavy Majorana neutrinos effectively decouple from the weak interactions. This 
is in keeping with the notion that the left-handed flavor states are mainly linear com- 
binations of light neutrino mass eigenstates, while the singlet flavor states are mainly 
combinations of the massive neutrino states. 

In the spirit of grand unification,’ we assume representative hierarchical chi- 
ral symmetry-breaking forms for the Dirac submatrices analogous to the empirical 
matricess which have been deduced for the quarks on the basis of a top quark mass 
near 130 - 135 GeV favored by the neutral-currents and flavor-changing”’ data: 

MN=(;; ; $), Mr=(:+,, zL -$) (4a) 
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Strictly speaking the quark-lepton symmetry between MN and the up quark mass 
matrix and between ML and the down quark mass matrix holds only at the grand uni- 
fication scale. We shall approximate the renormalization effects by adopting the same 
forms at the low energy scale, rather than assuming equality of the sets of quark and 
lepton mass matrices. The decisive advantage of this assignment is that we need deal 
with just three real parameters in each of these matrices, which keeps the complexity of 
our search manageable without greatly distorting the results. The three charged-lepton 
parameters are then determined uniquely from the known masses and invariant traces 
and determinant to be AL = 7.576 MeV, EL = 0.4181 GeV and CL = 1.686 GeV, 
while the neutrino entries are required to satisfy hierarchical chiral symmetry-breaking 
conditionsl’ for which we assume the inequalities 

0 < IA,v/Cp,I 5 O.~JBN/CNI 5 0.04 (4b) 

The right-handed Majorana submatrix RM remains completely unspecified without an 
explicit theoretical model, but as noted before, we shall assume here it is rank three, so 
as to give the well-known seesaw mechanism.s We now summarize briefly the procedure 
followed in Refs. 3 - 5 and present the results. 

2. Mixing Plane Results for Diagonal RM 

In general RM is complex symmetric, but we shall first consider it diagonal and 
positive real as given by RM = DM = diag(D 1, D,, D3). From the scaling properties 
of the seesaw mechanism, if the Dirac parameters AN, .?3~ and CN are scaled by a 
factor of 10, while D1, Ds and D3 are scaled by a factor of 100, the light masses and 
mixings remain unchanged; hence for this real diagonal RM situation, there are just 5 
independent parameters: ANICN, BN/CN and the three DilCN’S. The squares of the 
6 x 3 mixing matrix elements V-i in the mass basis, where a = 1 - 6, i = 1 - 3, can be 
calculated from the mass matrices in (1) by a generalization of Jarlskog’s projection 
operator technique” as explained fully in Refs. 3 and 4. In doing so, we find the value of 
IV,,l’ is independent of the Di’s and determined only by the ratios AN/CN and BN/CN. 
A minimum value of IV,,/ exists such that sin’ 2Bla N 4lV111’ > 0.0193; replacement of 
the forms in (4a) by the Fritz&” matrix forms reveals that this lower bound arises 
from the 90” phase of the 12 element in ML and would become weaker and weaker 
if the phase were reduced toward O”, corresponding to the disappearance of all CP 
violation. The lower bound quoted above has interesting implications for the expected 
solar neutrino capture ratesI in the experimentally-preferred nonadiabatic Mikheyev, 
Smirnov and Wolfensteinl’ (MSW) region which translates into a maximum capture 
rate in gallium of about 25 - 40 SNU in the nonadiabatic region as shown in Fig. 1 
from the work’s of Parke and Walker and Bahcall and Haxton. The preliminary data 
from the SAGE experiment’* are quite consistent with this observation. 

We now fix IV,,l” N sin’811 = 0.00485 and adjust bm:, = rn: - -k so that the 
point lies in the narrow allowed nonadiabatic MSW band specified byl7 

Sm~psin’ & N lo-’ eV2 (5) 
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Fig. 1. IsoSNU contours calculated by Parke 
and Walker’s for the gallium experiments 
superimposed on the allowed MSW region 
indicated by the closely-space dotted points. 
The vertical dotted line marks the lower 
bound on sin’ 2&s found in our model. The 
cross indicates the point held fixed for the 
remaining figures. 
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Fig. 2. Contours in the 6& vs. sin’2Bss 
plane for fixed bm:, = 2.06 x 10-s eVz and 
IV,sl’ = 0.00485 in the nonadiabatic MSW 
region with the curve convention indicated 
in (6). 

i.e., 6m2 11 N 2.06 x 10-s eV’. This is done by scaling the Di’s accordingly, where we 
choose DC’S in the ratios 

(a) D1 = lO*Ds = 1O’Ds (upper dot - dashed curve) 
(b) D1 = 10Dz = lOaDs (upper dashed curve) 
(c) JA - Dz - Da (solid curve) (6) 
(d) lOaD = 1ODs = D3 (lower dashed curve) 
(e) 10’01 = lOaDz = Da (lower dot - dashed curie) 

By varying the ratios AN/CN and BNICN while holding /V,,l’ fixed, one traces out 
the curves in Fig. 2 corresponding to the Di ratios of (6) above. Note that we have now 
plotted the ‘noses’ more accurately than was done earlier in Refs. 3 and 4. The allowed 
physical region in the Sm:, vs. sins 281s plane is then bounded from below by the 
dotted curve in Fig. 2, if one imposes the hierarchy conditions in (4b). For comparison, 
the present upper bounds from the E531 experiment Is at Fermilab and the CDHSW” 
collaboration at CERN are indicated by the closely-spaced dotted curves. 
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Other fixed points along the MSW nonadiabatic band have been studied3s’, but 
the results will not be presented here. We have also looked into the situation where 
the diagonal form for RM is allowed to assume negative values. We then find that the 
allowed physical region increases considerably by extending downward and to the left, 
but our most important conclusions to be drawn in section 4 remain unchanged. 

3. Mixing Plane Results for Nondiagonal RM 

In Ref. 4 our analysis was generalized to include nondiagonal RM by performing 
orthogonal rotations on the DM forms used in Ref. 3, 

RM = RT(a, P, -~)DnlR(a, P, 7) (7) 
For this purpose, we selected three points indicated by crosses in Fig. 3(a) lying along 
each curve obtained previously for the five cases in (6) above, and performed a Monte 
Carlo analysis by choosing at random 5000 rotations for each point. Fortunately, the 
values of /V&l’ remain fixed at 0.00485, while the Di’s must be resealed with each 
rotation to maintain the same point in the MSW band at Srniz = 2.06 x 10-s eVZ. 
The results appear in the form of the scatter plot also illustrated in Fig. 3(a). It is 
clear from this figure, that while the greater density of points indicating the largest 
probability lies within the dot-dashed curve obtained in section 2, there are a number 
of exceptional points outside this boundary which can not be excluded on the basis 
of our analysis. The results for the 13 mixing plane obtained in a similar fashion are 
shown in Fig. 3(b). The scatter of points lies much further from the present exper- 
imental upper boundary curve than the point suggested by a 17 keV tau neutrino 
found in several beta decay experiments using solid-state detectors.“’ It is interesting 
to note that attempts *’ to incorporate the 17 keV neutrino into our hierarchical chiral 
symmetry-breaking framework with quark-lepton symmetry failed when we replaced 
RM by a rank 2 matrix. 
4. Depletion of Atmospheric Muon Neutrino Flux 

We now address the issues whether we can simultaneously explain not only the 
MSW depletion of the solar electron-neutrino flux but also the depletion of the atmo- 
spheric muon-neutrino flux. The Kamiokande” result is quoted as 

&:‘,;; = 0.61 f 0.07 @a) 

and has just been confirmed by the IMB group ‘s at this Workshop. We simply translate 
this into the probability that the muon-flavor neutrino produced in the atmosphere by 
pion decay will remain a muon-flavor neutrino upon detection in the Kamiokande water 
Cerenkov counter: 

0.54 5 Prob(v,, -+ I/,,) 5 0.68 Cab) 
since the probability that the electron-neutrino remains an electron-neutrino is very 
close to unity. We approximate the three-component oscillation probability by 

Prob(v, + up) = 1 - 4Ci3,j_,(Vilr)a(V;:lr)asinz $#L 

N 1 - 2(QJ(v3&JZ - Z(&)“(v&J 
(9) 
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Fig. 3. Scatter plots in the (a) 6m~, vs. sin’ 281s and (b) Sm:, vs. sin* 281s planes ob- 
tained by rotating the diagonal DM matrices in (6) through Euler angles chosen by 
5000 sets of Monte Carlo throws as described in the text. The solid curves represent the 
present experimental upper limits, while the dot-dashed curve in (a) now corresponds 
to the hierarchical lower bound in Fig. 2. 

since the 12 oscillation length is much longer than the atmospheric production flight- 
path length. In fact, detailed atmospheric neutrino flux calculatiom?’ suggest the 13 
and 23 oscillations only become important for 6m:s N && 2 (0.1 - 2) x 10-s eVz. 

We now use (9) and impose the restriction (Eb) on our results for the scatter plot 
obtained by the Euler rotations explained earlier. The points which survive this cut 
are indicated by the larger scatter points all located at the lower right-hand edge of 
Fig. 3(a), below the CDHSW boundary curve and for sin2 282s 2 0.65. Of the 60,000 
points generated by our Monte Carlo program, just slightly more than 100 pass the 
probability cut in (8b). Nevertheless, a scan through the mass and mixing output of 
the points selected shows a clear pattern, from which we can identify the form of RM 
required. 

The mixing matrices are all very similar - but very different from the Cabibbo- 
Kobayashi-Maskawa mixing matrix in the quark case, and in a special but typical case 
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we find for the light 3 x 3 sector 

0.99514 0.00485 0.00001 
Itila = ( 0.00367 0.76359 0.23274 

0.00119 0.23156 0.76724 

leading, in the standard sign convention, to 

(lOa) 

0.998 0.070 0.003.Y”08’ 
v= -0.061 - O.OOli 0.874 0.482 (lob) 

0.034 - 0.003i -0.481 0.876 

with sin’ 281s = 0.711, Prob(v, + v,,) = 0.64; the two-component oscillation variable 
sina 2&z, determined from the formula for Prob(v. + v’) analogous to (9) with ail 

sin’ %L set equal to 0.5, is calculated to be sin’ 2o11 = 0.0194 = 41V121’ as required. 
Note the unitary nature of this 3 x 3 submatrix which is an excellent check on our 
numerical procedure. The mass matrix parameters for this specific case. are AN = 
30 MeV, BN = 10.8 GeV and CN = 69.1 GeV, when CN is scaled relative to the 
charged lepton and quark mass matrices as noted in Refs. 3 and 4; with the right- 
handed Majorana mass submatrix then given by 

RM = 

( 

0.0089 0.0103 0.0464 
0.0103 0.0186 0.1174 
0.0464 0.1174 0.8556 1 

x 10’s GeV (lla) 

the mass eigenvalues are found to be 

ml = 1.53 x lo-” ev 
m, = 8.74 x 1O’O GeV), 

rnz = 1.44 X 10-s eV 
ms = 8.74 x 1Olz Ge;, 

m3 = 0.123 eV 
me = 8.74 x 1Ol4 GeV 

WI 
In comparison, the CKM mixing matrix deduced for the empirical set of hierarchical 
chiral symmetry-breaking quark mass matrices* yielding a top quark mass near 130 - 
135 GeV, which prompted this study, is given by 

( 

0.975 0.222 o.o03e-“Os” 
V CKM = -0.222 0.974 0.045 POC) 

0.011 - 0.003%. -0.044 - O.OOli 0.999 ) 

The class of models that simultaneously satisfies both the MSW effect for the 
solar defficiency and the depletion of the atmospheric u,, flux has the hierarchical 
chiral symmetry-breaking structure exhibited in (lla), remarkably similar in form to 
the Dirac submatrix MN in (4a), and more generally is approximately proportional to 
the matrix 

tana p co2 7 -tanzpsinrcosr -tan,Bcosr 
Rnaf- - tans ,B sin 7 co8 7 tan’ /I sins 7 tan p sin -y (12) 

- tanpcosr tanpsinr 1 



with p N 9” f4” and 7 N 90” &40”. Thus while the selected points are not statistically 
significant, we find an intriguing suggestion that some Lagrangian theory may well 
single out Dirac and right-handed Majorana neutrino mass submatrices which exhibit 
a similar hierarchical chiral symmetry-breaking form. 

In closing we point out that just several acceptable solutions with the simulta- 
neous flux depletions were obtained when the point (sin2Bll = 0.05, 6n& = 2.0 x 
lo-’ eV1) was chosen in the MSW band. It thus appears that the simultaneous de- 
pletion effect limits the allowed region in the nonadiabatic MSW band to the range 
between the two points (0.00485, 2.06 x 10-s eV1) and (0.05, 2.0 x 10-r eV”) for this 
class of models. The cases of negative entries in DM of (6) have also been studied but 
do not change our conclusion above. 
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